Thursday, August 15, 2019
Objectives Project Essay
Project termination can happen for many reason some out of control of the project managers. If the project is successful or not successful you have to ensure that many task are complete to terminate the project. Our project is going to be successful and when the project is complete will be sure that all final task will be closed out properly. There will be a proper termination of the project making sure that it ends effectively and efficient. At the ends of the project the following task must be completed the project will be complete, it will be delivered and accepted by the client, a finalized report will be prepared, all bills will have been paid and invoiced to the client, all resources will be returned to the proper places, all documentation for the project will be stored in the proper manner, and the project books will be properly closed. The methods that we are going to use to ensure that the project met its objectives is by using retrospectives. While conducting the retrospectives we will evaluate many sections from the project context and descriptions, the project timelines, and evaluations of what is going right and what went wrong throughout the project and how to prevent those issues in the future. By evaluation where the project had issues and coming up with a solution will better provide us an example of thing to avoid in the future. There are six main criteria that will be reviewed to the fullest to determine the success rate of the project. The first criteria is the schedule, was the project completed in the proper time frame if it was not what was the issues that caused the project to take longer to complete to be successful. The second criteria is going to be cost. Was the project completed under budget, on budget, or over budget and if over budget what was the cause of being over budget. The third criteria would be product, was the product satisfactory and meet the need of the client. The fourth criteria is use, was the project implemented and used for its original purpose and was it function able. Fifth criteria being value, was the project and overall success. The last criteria is going to be learn, what was learned throughout the project, should have there been changes that could have been made to make the project more successful. Reviewing all six of these criteria will ensure that our project was successful on our part and that our client is also satisfied.
Wednesday, August 14, 2019
Blood pressure Essay Example for Free (#2)
Blood pressure Essay Blood pressure (BP), sometimes referred to as arterial blood pressure, is the pressureexerted by circulating blood upon the walls of blood vessels, and is one of the principal vital signs. When used without further specification, ââ¬Å"blood pressureâ⬠usually refers to thearterial pressure of the systemic circulation. During each heartbeat, blood pressure varies between a maximum (systolic) and a minimum (diastolic) pressure.[1] The blood pressure in the circulation is principally due to the pumping action of the heart.[2] Differences in mean blood pressure are responsible for blood flow from one location to another in the circulation. The rate of mean blood flow depends on the resistance to flow presented by the blood vessels. Mean blood pressure decreases as the circulating blood moves away from the heart through arteries and capillaries due to viscous losses of energy. Mean blood pressure drops over the whole circulation, although most of the fall occurs along the small arteries and arterioles.[3] Gravity affects blood pressure via hydrostatic forces (e.g., during standing) and valves in veins, breathing, and pumping from contraction of skeletal muscles also influence blood pressure in veins.[2] The measurement blood pressure without further specification usually refers to the systemic arterial pressure measured at a personââ¬â¢s upper arm and is a measure of the pressure in the brachial artery, major artery in the upper arm. A personââ¬â¢s blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure and is measured in millimetres of mercury (mmHg), for example 120/80. The table on the right shows the classification of blood pressure adopted by the American Heart Association for adults who are 18 years and older.[4] It assumes the values are a result of averaging blood pressure readings measured at two or more visits to the doctor.[6][7] In the UK, blood pressures are usually categorised into three groups: low (90/60 or lower), high (140/90 or higher), and normal (values above 90/60 and below 130/80).[8][9] While average values for arterial pressure could be computed for any given population, there is often a large variation from person to person; arterial pressure also varies in individuals from moment to moment. Additionally, the average of any given population may have a questionable correlation with its general health; thus the relevance of such average values is equally questionable. However, in a study of 100 human subjects with no known history of hypertension, an average blood pressure of 112/64 mmHg was found,[10] which are currently classified as desirable or ââ¬Å"normalâ⬠values. Normal values fluctuate through the 24-hour cycle, with highest readings in the afternoons and lowest readings at night.[11][12] Various factors, such as age and sex influence average values, influence a personââ¬â¢s average blood pressure and variations. In children, the normal ranges are lower than for adults and depend on height.[13] As adults age, systolic pressure tends to rise and diastolic tends to fall.[14] In the elderly, blood pressure tends to be above the normal adult range,[15] largely because of reduced flexibility of the arteries. Also, an individualââ¬â¢s blood pressure varies with exercise, emotional reactions, sleep, digestion and time of day. Differences between left and right arm blood pressure measurements tend to be random and average to nearly zero if enough measurements are taken. However, in a small percentage of cases there is a consistent difference greater than 10 mmHg which may need further investigation, e.g. for obstructive arterial disease.[16][17] The risk of cardiovascular disease increases progressively above 115/75 mmHg.[18] In the past, hypertension was only diagnosed if secondary signs of high arterial pressure were present, along with a prolonged high systolic pressure reading over several visits. Regarding hypotension, in practice blood pressure is considered too low only if noticeable symptoms are present.[5] Clinical trials demonstrate that people who maintain arterial pressures at the low end of these pressure ranges have much better long term cardiovascular health. The principal medical debate concerns the aggressiveness and relative value of methods used to lower pressures into this range for those who do not maintain such pressure on their own. Elevations, more commonly seen in older people, though often considered normal, are associated with increased morbidity and mortality. There are many physical factors that influence arterial pressure. Each of these may in turn be influenced by physiological factors, such as diet, exercise, disease, drugs or alcohol, stress, obesity, and so-forth.[20] â⬠¢ Volume of fluid or blood volume, the amount of blood that is present in the body. The more blood present in the body, the higher the rate of blood return to the heart and the resulting cardiac output. There is some relationship between dietary salt intake and increased blood volume, potentially resulting in higher arterial pressure, though this varies with the individual and is highly dependent on autonomic nervous system response and the renin-angiotensin system.[21][22][23] â⬠¢ Resistance. In the circulatory system, this is the resistance of the blood vessels. The higher the resistance, the higher the arterial pressure upstream from the resistance to blood flow. Resistance is related to vessel radius (the larger the radius, the lower the resistance), vessel length (the longer the vessel, the higher the resistance), blood viscosity, as well as the smoothness of the blood vessel walls. Smoothness is reduced by the build up of fatty deposits on the arterial walls. Substances called vasoconstrictors can reduce the size of blood vessels, thereby increasing blood pressure. Vasodilators (such as nitroglycerin) increase the size of blood vessels, thereby decreasing arterial pressure. Resistance, and its relation to volumetric flow rate (Q) and pressure difference between the two ends of a vessel are described by Poiseuilleââ¬â¢s Law. â⬠¢ Viscosity, or thickness of the fluid. If the blood gets thicker, the result is an increase in arterial pressure. Certain medical conditionscan change the viscosity of the blood. For instance, anemia (low red blood cell concentration), reduces viscosity, whereas increased red blood cell concentration increases viscosity. It had been thought that aspirin and related ââ¬Å"blood thinnerâ⬠drugs decreased the viscosity of blood, but instead studies found[24] that they act by reducing the tendency of the blood to clot. In practice, each individualââ¬â¢s autonomic nervous system responds to and regulates all these interacting factors so that, although the above issues are important, the actual arterial pressure response of a given individual varies widely because of both split-second and slow-moving responses of the nervous system and end organs. These responses are very effective in changing the variables and resulting blood pressure from moment to moment. Moreover, blood pressure is the result of cardiac output increased by peripheral resistance: blood pressure = cardiac output Xperipheral resistance. As a result, an abnormal change in blood pressure is often an indication of a problem affecting the heartââ¬â¢s output, the blood vesselsââ¬â¢ resistance, or both. Thus, knowing the patientââ¬â¢s blood pressure is critical to assess any pathology related to output and resistance. The mean arterial pressure (MAP) is the average over a cardiac cycle and is determined by the cardiac output (CO), systemic vascular resistance (SVR), and central venous pressure (CVP),[25] Curve of the arterial pressure during one cardiac cycle The up and down fluctuation of the arterial pressure results from the pulsatile nature of thecardiac output, i.e. the heartbeat. The pulse pressure is determined by the interaction of thestroke volume of the heart, compliance (ability to expand) of the aorta, and the resistance to flow in the arterial tree. By expanding under pressure, the aorta absorbs some of the force of the blood surge from the heart during a heartbeat. In this way, the pulse pressure is reduced from what it would be if the aorta wasnââ¬â¢t compliant.[26] The loss of arterial compliance that occurs with aging explains the elevated pulse pressures found in elderly patients. The pulse pressure can be simply calculated from the difference of the measured systolic and diastolic pressures,[26] The armââ¬âleg (blood pressure) gradient is the difference between the blood pressure measured in the arms and that measured in the legs. It is normally less than 10 mmHg,[27] but may be increased in e.g. coarctation of the aorta.[27] The larger arteries, including all large enough to see without magnification, are conduits with low vascular resistance (assuming no advanced atherosclerotic changes) with high flow rates that generate only small drops in pressure. The smaller arteries and arterioles have higher resistance, and confer the main drop in blood pressure along the circulatory system. Modern physiology developed the concept of the vascular pressure wave (VPW). This wave is created by the heart during the systoleand originates in the ascending aorta. Much faster than the stream of blood itself, it is then transported through the vessel walls to the peripheral arteries. There the pressure wave can be palpated as the peripheral pulse. As the wave is reflected at the peripheral veins, it runs back in a centripetal fashion. When the reflected wave meets the next outbound pressure wave, the pressure inside the vessel rises higher than the pressure in the aorta. This concept explains why the arterial pressure inside the peripheral arteries of the legs and arms is higher than the arterial pressure in the aorta,[28][29][30] and in turn for the higher pressures seen at the ankle compared to the arm with normal ankle brachial pressure index values. The endogenous regulation of arterial pressure is not completely understood, but the following mechanisms of regulating arterial pressure have been well-characterized: â⬠¢ Baroreceptor reflex: Baroreceptors in the high pressure receptor zones detect changes in arterial pressure. These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the Rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system, adjusts the mean arterial pressure by altering both the force and speed of the heartââ¬â¢s contractions, as well as the total peripheral resistance. The most important arterial baroreceptors are located in the left and rightcarotid sinuses and in the aortic arch.[31] â⬠¢ Renin-angiotensin system (RAS): This system is generally known for its long-term adjustment of arterial pressure. This system allows the kidney to compensate for loss in blood volume or drops in arterial pressure by activating an endogenous vasoconstrictorknown as angiotensin II. â⬠¢ Aldosterone release: This steroid hormone is released from the adrenal cortex in response to angiotensin II or high serum potassiumlevels. Aldosterone stimulates sodium retention and potassium excretion by the kidneys. Since sodium is the main ion that determines the amount of fluid in the blood vessels by osmosis, aldosterone will increase fluid retention, and indirectly, arterial pressure. â⬠¢ Baroreceptors in low pressure receptor zones (mainly in the venae cavae and the pulmonary veins, and in the atria) result in feedback by regulating the secretion of antidiuretic hormone (ADH/Vasopressin), renin and aldosterone. The resultant increase inblood volume results an increased cardiac output by the Frankââ¬âStarling law of the heart, in turn increasing arterial blood pressure. These different mechanisms are not necessarily independent of each other, as indicated by the link between the RAS and aldosterone release. Currently, the RAS is targeted pharmacologically by ACE inhibitors and angiotensin II receptor antagonists. The aldosterone system is directly targeted by spironolactone, an aldosterone antagonist. The fluid retention may be targeted by diuretics; the antihypertensive effect of diuretics is due to its effect on blood volume. Generally, the baroreceptor reflex is not targeted in hypertensionbecause if blocked, individuals may suffer from orthostatic hypotension and fainting. A medical student checking blood pressure using a sphygmomanometer and stethoscope. Arterial pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pressure.[32] Blood pressure values are generally reported in millimetres of mercury (mmHg), though aneroid and electronic devices do not use mercury. For each heartbeat, blood pressure varies between systolic and diastolic pressures. Systolic pressure is peak pressure in the arteries, which occurs near the end of the cardiac cyclewhen the ventricles are contracting. Diastolic pressure is minimum pressure in the arteries, which occurs near the beginning of the cardiac cycle when the ventricles are filled with blood. An example of normal measured values for a resting, healthy adult human is 120 mmHgsystolic and 80 mmHg diastolic (written as 120/80 mmHg, and spoken [in the US and UK] as ââ¬Å"one-twenty over eightyâ⬠). Systolic and diastolic arterial blood pressures are not static but undergo natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, blood pressure is one of the four main vital signs routinely monitored by medical professionals and healthcare providers.[33] Measuring pressure invasively, by penetrating the arterial wall to take the measurement, is much less common and usually restricted to a hospital setting. The noninvasive auscultatory and oscillometric measurements are simpler and quicker than invasive measurements, require less expertise, have virtually no complications, are less unpleasant and less painful for the patient. However, noninvasive methods may yield somewhat lower accuracy and small systematic differences in numerical results. Noninvasive measurement methods are more commonly used for routine examinations and monitoring. A minimum systolic value can be roughly estimated by palpation, most often used in emergency situations, but should be used with caution.[34] It has been estimated that, using 50% percentiles, carotid, femoral and radial pulses are present in patients with a systolic blood pressure > 70 mmHg, carotid and femoral pulses alone in patients with systolic blood pressure of > 50 mmHg, and only a carotid pulse in patients with a systolic blood pressure of > 40 mmHg.[34] A more accurate value of systolic blood pressure can be obtained with a sphygmomanometer and palpating the radial pulse.[35] The diastolic blood pressure cannot be estimated by this method.[36] The American Heart Association recommends that palpation be used to get an estimate before using the auscultatory method. Auscultatory method aneroid sphygmomanometer with stethoscope Mercury manometer The auscultatory method (from the Latin word for ââ¬Å"listeningâ⬠) uses a stethoscope and asphygmomanometer. This comprises an inflatable (Riva-Rocci) cuff placed around the upperarm at roughly the same vertical height as the heart, attached to a mercury or aneroidmanometer. The mercury manometer, considered the gold standard, measures the height of a column of mercury, giving an absolute result without need for calibration and, consequently, not subject to the errors and drift of calibration which affect other methods. The use of mercury manometers is often required in clinical trials and for the clinical measurement of hypertension in high-risk patients, such as pregnant women. A cuff of appropriate size is fitted smoothly and snugly, then inflated manually by repeatedly squeezing a rubber bulb until the artery is completely occluded. Listening with the stethoscope to the brachial artery at the elbow, the examiner slowly releases the pressure in the cuff. When blood just starts to flow in the artery, the turbulent flow creates a ââ¬Å"whooshingâ⬠or pounding (first Korotkoff sound). The pressure at which this sound is first heard is the systolic blood pressure. The cuff pressure is further released until no sound can be heard (fifth Korotkoff sound), at the diastolic arterial pressure. The auscultatory method is the predominant method of clinical measurement.[37] The oscillometric method was first demonstrated in 1876 and involves the observation of oscillations in the sphygmomanometer cuff pressure[38] which are caused by the oscillations of blood flow, i.e., the pulse.[39] The electronic version of this method is sometimes used in long-term measurements and general practice. It uses a sphygmomanometer cuff, like the auscultatory method, but with an electronic pressure sensor (transducer) to observe cuff pressure oscillations, electronics to automatically interpret them, and automatic inflation and deflation of the cuff. The pressure sensor should be calibrated periodically to maintain accuracy. Oscillometric measurement requires less skill than the auscultatory technique and may be suitable for use by untrained staff and for automated patient home monitoring. The cuff is inflated to a pressure initially in excess of the systolic arterial pressure and then reduced to below diastolic pressure over a period of about 30 seconds. When blood flow is nil (cuff pressure exceeding systolic pressure) or unimpeded (cuff pressure below diastolic pressure), cuff pressure will be essentially constant. It is essential that the cuff size is correct: undersized cuffs may yield too high a pressure; oversized cuffs yield too low a pressure. When blood flow is present, but restricted, the cuff pressure, which is monitored by the pressure sensor, will vary periodically in synchrony with the cyclic expansion and contraction of the brachial artery, i.e., it will oscillate. The values of systolic and diastolic pressure are computed, not actually measured from the raw data, using an algorithm; the computed results are displayed. Oscillometric monitors may produce inaccurate readings in patients with heart and circulation problems, which include arterial sclerosis, arrhythmia, preeclampsia, pulsus alternans, and pulsus paradoxus. In practice the different methods do not give identical results; an algorithm and experimentally obtained coefficients are used to adjust the oscillometric results to give readings which match the auscultatory results as well as possible. Some equipment uses computer-aided analysis of the instantaneous arterial pressure waveform to determine the systolic, mean, and diastolic points. Since many oscillometric devices have not been validated, caution must be given as most are not suitable in clinical and acute care settings. The term NIBP, for non-invasive blood pressure, is often used to describe oscillometric monitoring equipment. Continuous noninvasive techniques (CNAP) Continuous Noninvasive Arterial Pressure (CNAP) is the method of measuring arterial blood pressure in real-time without any interruptions and without cannulating the human body. CNAP combines the advantages of the following two clinical ââ¬Å"gold standardsâ⬠: it measures blood pressure continuously in real-time like the invasive arterial catheter system and it is noninvasive like the standard upper arm sphygmomanometer. Latest developments in this field show promising results in terms of accuracy, ease of use and clinical acceptance. Non-occlusive techniques: the Pulse Wave Velocity (PWV) principle Since the 90s a novel family of techniques based on the so-called Pulse wave velocity (PWV) principle have been developed. These techniques rely on the fact that the velocity at which an arterial pressure pulse travels along the arterial tree depends, among others, on the underlying blood pressure.[40] Accordingly, after a calibration maneuver, these techniques provide indirect estimates of blood pressure by translating PWV values into blood pressure values.[41] The main advantage of these techniques is that it is possible to measure PWV values of a subject continuously (beat-by-beat), without medical supervision, and without the need of inflating brachial cuffs. PWV-based techniques are still in the research domain and are not adapted to clinical settings. For some patients, blood pressure measurements taken in a doctorââ¬â¢s office may not correctly characterize their typical blood pressure.[42] In up to 25% of patients, the office measurement is higher than their typical blood pressure. This type of error is calledwhite-coat hypertension (WCH) and can result from anxiety related to an examination by a health care professional.[43] The misdiagnosis of hypertension for these patients can result in needless and possibly harmful medication. WCH can be reduced (but not eliminated) with automated blood pressure measurements over 15 to 20 minutes in a quiet part of the office or clinic.[44] Debate continues regarding the significance of this effect.[citation needed] Some reactive patients will react to many other stimuli throughout their daily lives and require treatment. In some cases a lower blood pressure reading occurs at the doctorââ¬â¢s office.[45] Ambulatory blood pressure devices that take readings every half hour throughout the day and night have been used for identifying and mitigating measurement problems like white-coat hypertension. Except for sleep, home monitoring could be used for these purposes instead of ambulatory blood pressure monitoring.[46] Home monitoring may be used to improve hypertension management and to monitor the effects of lifestyle changes and medication related to blood pressure.[6] Compared to ambulatory blood pressure measurements, home monitoring has been found to be an effective and lower cost alternative,[46][47][48] but ambulatory monitoring is more accurate than both clinic and home monitoring in diagnosing hypertension. Ambulatory monitoring is recommended for most patients before the start of antihypertensive drugs.[49] Aside from the white-coat effect, blood pressure readings outside of a clinical setting are usually slightly lower in the majority of people. The studies that looked into the risks from hypertension and the benefits of lowering blood pressure in affected patients were based on readings in a clinical environment. When measuring blood pressure, an accurate reading requires that one not drink coffee, smoke cigarettes, or engage in strenuous exercise for 30 minutes before taking the reading. A full bladder may have a small effect on blood pressure readings; if the urge to urinate arises, one should do so before the reading. For 5 minutes before the reading, one should sit upright in a chair with oneââ¬â¢s feet flat on the floor and with limbs uncrossed. The blood pressure cuff should always be against bare skin, as readings taken over a shirt sleeve are less accurate. During the reading, the arm that is used should be relaxed and kept at heart level, for example by resting it on a table.[50] Since blood pressure varies throughout the day, measurements intended to monitor changes over longer time frames should be taken at the same time of day to ensure that the readings are comparable. Suitable times are: â⬠¢ immediately after awakening (before washing/dressing and taking breakfast/drink), while the body is still resting, â⬠¢ immediately after finishing work. Automatic self-contained blood pressure monitors are available at reasonable prices, some of which are capable of Korotkoffââ¬â¢s measurement in addition to oscillometric methods, enabling irregular heartbeat patients to accurately measure their blood pressure at home. Arterial blood pressure (BP) is most accurately measured invasively through an arterial line. Invasive arterial pressure measurement with intravascular cannulae involves direct measurement of arterial pressure by placing a cannula needle in an artery (usually radial, femoral,dorsalis pedis or brachial). The cannula must be connected to a sterile, fluid-filled system, which is connected to an electronic pressure transducer. The advantage of this system is that pressure is constantly monitored beat-by-beat, and a waveform (a graph of pressure against time) can be displayed. This invasive technique is regularly employed in human and veterinary intensive care medicine, anesthesiology, and for research purposes. Cannulation for invasive vascular pressure monitoring is infrequently associated with complications such as thrombosis, infection, andbleeding. Patients with invasive arterial monitoring require very close supervision, as there is a danger of severe bleeding if the line becomes disconnected. It is generally reserved for patients where rapid variations in arterial pressure are anticipated. Invasive vascular pressure monitors are pressure monitoring systems designed to acquire pressure information for display and processing. There are a variety of invasive vascular pressure monitors for trauma, critical care, and operating room applications. These include single pressure, dual pressure, and multi-parameter (i.e. pressure / temperature). The monitors can be used for measurement and follow-up of arterial, central venous, pulmonary arterial, left atrial, right atrial, femoral arterial, umbilical venous, umbilical arterial, and intracranial pressures. Further information: Fetal circulation#Blood pressure In pregnancy, it is the fetal heart and not the motherââ¬â¢s heart that builds up the fetal blood pressure to drive its blood through the fetal circulation. The blood pressure in the fetal aorta is approximately 30 mmHg at 20 weeks of gestation, and increases to approximately 45 mmHg at 40 weeks of gestation.[51] The average blood pressure for full-term infants: Systolic 65ââ¬â95 mm Hg Diastolic 30ââ¬â60 mm Hg[52] Blood pressure is the measurement of force that is applied to the walls of the blood vessels as the heart pumps blood throughout the body.[53] The human circulatory system is 400,000 miles long, and the magnitude of blood pressure is not uniform in all the blood vessels in the human body. The blood pressure is determined by the diameter, flexibility and the amount of blood being pumped through the blood vessel.[53] Blood pressure is also affected by other factors including exercise, stress level, diet and sleep. The average normal blood pressure in the brachial artery, which is the next direct artery from the aorta after the subclavian artery, is 120mmHg/80mmHg. Blood pressure readings are measured in millimeters of mercury (mmHg) using sphygmomanometer. Two pressures are measured and recorded namely as systolic and diastolic pressures. Systolic pressure reading is the first reading, which represents the maximum exerted pressure on the vessels when the heart contracts, while the diastolic pressure, the second reading, represents the minimum pressure in the vessels when the heart relaxes.[54] Other major arteries have similar levels of blood pressure recordings indicating very low disparities among major arteries. The innominate artery, the average reading is 110/70mmHg, the right subclavian artery averages 120/80 and the abdominal aorta is 110/70mmHg.[55] The relatively uniform pressure in the arteries indicate that these blood vessels act as a pressure reservoir for fluids that are transported within them. Pressure drops gradually as blood flows from the major arteries, through the arterioles, the capillaries until blood is pushed up back into the heart via the venules, the veins through the vena cava with the help of the muscles. At any given pressure drop, the flow rate is determined by the resistance to the blood flow. In the arteries, with the absence of diseases, there is very little or no resistance to blood. The vessel diameter is the most principal determinant to control resistance. Compared to other smaller vessels in the body, the artery has a much bigger diameter (4mm), therefore the resistance is low.[55] In addition, flow rate (Q) is also the product of the cross-sectional area of the vessel and the average velocity (Q = AV). Flow rate is directly proportional to the pressure drop in a tube or in this case a vessel. âËâ P à ± Q. The relationship is further described by Poisseulleââ¬â¢s equation âËâ P = 8à µlQ/Ãâ¬r4.[56] As evident in the Poisseulleââ¬â¢s equation, although flow rate is proportional to the pressure drop, there are other factors of blood vessels that contribute towards the difference in pressure drop in bifurcations of blood vessels. These include viscosity, length of the vessel, and radius of the vessel. Factors that determine the flowââ¬â¢s resistance as described by Poiseuilleââ¬â¢s relationship: â⬠¢ âËâ P: pressure drop/gradient â⬠¢ à µ: viscosity â⬠¢ l: length of tube. In the case of vessels with infinitely long lengths, l is replaced with diameter of the vessel. â⬠¢ Q: flow rate of the blood in the vessel â⬠¢ r: radius of the vessel Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe. For instance if p1 and p2 are pressures are at the ends of the tube, the pressure drop/gradient is:[57] In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in pressure. The more bifurcations, the higher the total cross-sectional area, therefore the pressure across the surface drops. This is why the arterioles have the highest pressure-drop. The pressure drop of the arterioles is the product of flow rate and resistance: âËâ P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the âËâ P is a result of a smaller radius of about 30 à µm.[58] The smaller the radius of a tube, the larger the resistance to fluid flow. Immediately following the arterioles are the capillaries. Following the logic obvserved in the arterioles, we expect the blood pressure to be lower in the capillaries compared to the arterioles. Since pressure is a function of force per unit area, (P = F/A), the larger the surface area, the lesser the pressure when an external force acts on it. Though the radii of the capillaries are very small, the network of capillaries have the largest surface area in the vascular network. They are known to have the largest surface area (485mm) in the human vascular network. The larger the total cross-sectional area, the lower the mean velocity as well as the pressure.[55] Reynoldââ¬â¢s number also affects the blood flow in capillaries. Due to its smaller radius and lowest velocity compared to other vessels, the Reynoldââ¬â¢s number at the capillaries is very low, resulting in laminar instead of turbulent flow.[59] The Reynoldââ¬â¢s number (denoted NR or Re) is a relationship that helps determine the behavior of a fluid in a tube, in this case blood in the vessel. The equation for this dimensionless relationship is written as:[56] â⬠¢ à : density of the blood â⬠¢ v: mean velocity of the blood â⬠¢ L: characteristic dimension of the vessel, in this case diameter â⬠¢ à ¼: viscosity of blood The Reynoldââ¬â¢s number is directly proportional to the velocity and diameter of the tube. Note that NR is directly proportional to the mean velocity as well as the diameter. A Reynoldââ¬â¢s number of less than 2300 is laminar fluid flow, which is characterized by constant flow motion, whereas a value of over 4000, is represented as turbulent flow. Turbulent flow is characterized as chaotic and irregular flow.[56] Disregulation disorders of blood pressure control include high blood pressure, blood pressure that is too low, and blood pressure that shows excessive or maladaptive fluctuation. Overview of main complications of persistent high blood pressure. Arterial hypertension can be an indicator of other problems and may have long-term adverse effects. Sometimes it can be an acute problem, for examplehypertensive emergency. All levels of arterial pressure put mechanical stress on the arterial walls. Higher pressures increase heart workload and progression of unhealthy tissue growth (atheroma) that develops within the walls of arteries. The higher the pressure, the more stress that is present and the more atheroma tend to progress and the heart muscle tends to thicken, enlarge and become weaker over time. Persistent hypertension is one of the risk factors for strokes, heart attacks,heart failure and arterial aneurysms, and is the leading cause of chronic renal failure. Even moderate elevation of arterial pressure leads to shortened life expectancy. At severely high pressures, mean arterial pressures 50% or more above average, a person can expect to live no more than a few years unless appropriately treated.[60] In the past, most attention was paid to diastolic pressure; but nowadays it is recognised that both high systolic pressure and high pulse pressure (the numerical difference between systolic and diastolic pressures) are also risk factors. In some cases, it appears that a decrease in excessive diastolic pressure can actually increase risk, due probably to the increased difference between systolic and diastolic pressures (see the article on pulse pressure). If systolic blood pressure is elevated (>140) with a normal diastolic blood pressure ( Blood pressure. (2017, Feb 22).
Tuesday, August 13, 2019
The Inside Truth of Avis Europe PLC(UK) planned failed(this may vary) Essay
The Inside Truth of Avis Europe PLC(UK) planned failed(this may vary) - Essay Example Avis Europe had planned to implement this same system for their enterprise but the implementation of the project was cancelled after a $54.5 million investment. The lack of planning and inability to indentify requirements led to the failure of the ERP system even before it was officially implemented. By remaining focused on the objectives and careful planning the failure at avis Europe could have been avoided. The information technology industry has seen rapid growth over a period of time. Organizations are continuously looking for excellent quality software to enhance their productivity and profits. Despite the millions of dollars invested in implementing various information systems, organizations still encounter serious problems and failures during as well as following the implementation. Management Information System (MIS) failures occur all around the world in all kinds of organizations ranging from retailers to government organizations. There is a list of such failures which occurred in history and cost organizations millions of dollars in losses. some of the most notable IT failures in history include Hudson Bay Co. (Canada) which faced inventory problems which led to losses of over $33.3 million; Hewlett-Packard Co. (UK) which suffered $160 million loss as a result of a faulty ERP system; McDonaldââ¬â¢s Corp. spent $170 million on information system purchase but later cancelled the project, Hersheyââ¬â¢s faced an ERP failure which cost the company heavily, and the list goes on. Another such company to face information technology implementation failure for the Enterprise Resource Planning system is Avis Europe. This project aims to analyses the need for the implementation of the Enterprise Resource Planning system at Avis Europe and to study the problems faced by the company in the implementation which eventually
Monday, August 12, 2019
Learning Journal Essay Example | Topics and Well Written Essays - 500 words - 1
Learning Journal - Essay Example For a long time I skipped looking at pictures. I was so nervous about getting the reading and writing done on time. Many of the things that I did not understand in the words can be explained by looking at maps, charts and pictures. They are worth looking at before I read because they give me hints about what is going to be said in the book. I like this discovery because it makes my work easier. In class I am finding out that trying to get work done fast just results in mistakes. These journals should not take so long, but they do because I want to do them well. I learned that time management is important for success. There is a story about a small train that goes slowly up the mountain. It does not go fast but it gets over the mountain all the same. I am that small train. I think that everything takes so long and is so hard in school, but I can see that I am learning new things. I just want to be better than I am. The hardest thing about writing is spelling and making the sentences work right. I wish there was a computer that I could speak into so I would not need to type. Then my sentences would come out correctly. This is especially true if I could speak well. Learning to spell is hard, but the spell check on the computer helps a lot. It shows the right way to spell words that I cannot spell correctly. I figure that eventually I will make enough mistakes to see how to spell all of the words I need to spell. Putting sentences in the right order is hard too, but not as hard as spelling. I have learned this week that I am better at listening than reading. I tried to remember everything said in class and went back to write it down. I could remember almost everything. Writing out what happened in class afterwards made me feel like I had learned something. Later I read from a book and tried to write down the things I learned. I could only write a little bit. I learned this week that if I listen
Sunday, August 11, 2019
Leadership Plan Case Study Example | Topics and Well Written Essays - 1500 words
Leadership Plan - Case Study Example Leadership is the most crucial position in any organization. As a leader, one should be able to identify vision and goals of the organization and establish clear ways of accomplishing the goals. While in a leadership role one influences decisions and shows his relevance in the group. The leader should also be creative enough to solve arising problems in the organization. Joan with the leadership role as a manager of the firm is expected to lead the company in establishing ways of going green as the community expects. The leadership role is faced with a variety of challenges, as Joan is new in the position. In addition, there is much pressure on the company from the decision of going green, and the responsibility of the manager is to enforce the move. For these reasons, the incumbent should give results to convince management and employees that she is competent to office. If one in a leadership role gives results, they will get support from both management and employees. Due to this, any decisions made by the leader will enjoy the support from employees, therefore, establishing a better working relationship (Ciampa, & Watkins, 1999). In doing all the above, one in a leadership role should be able to understand and interpret the environment in which the business operates. Developing winning strategies is also a critical factor and executing them in a brilliant manner. Lastly, leadership role involves measuring of the impact of policies established and adjusting them accordingly. It is also the mandate of individuals in leadership positions to develop organizational, departmental, team and personal capabilities. As a leader, Joan should be able to understand and interpret the environment by identifying opportunities that should be the target of action. In addition, she should be in a position to identify threats to the company before they materialize (Bolden, 2011). As an individual leader, the
Saturday, August 10, 2019
Australian Marketing and Advertising Law Essay Example | Topics and Well Written Essays - 1500 words
Australian Marketing and Advertising Law - Essay Example At times, however, the innovation might be jeopardized because of marketing. For instance, the most popular brand name Coca-Cola was subject to serious criticism from public and competitors when it was found to have traces of coca leaves that are dangerous to health. The Coca-Cola Companyââ¬â¢s lawyers contested the claim and argued that cola is a special herb that improves health and the concentration of coca leaves in the beverage is not harmful for health. At this point, the competitors argued that the brand name Coca-Cola is deceptive in its nature as it does not really include anything that its name suggests (Solar Navigator). The marketers have to be aware of the importance of trademark laws to ensure that they do not violate any of these laws. Likewise, the Coca-Cola formula is a secretive recipe that is unknown to the world though it exists almost 100 years. The recipe is protected under Trade Secrets law. For marketers, it is important to understand the intellectual prope rty rights associated with the innovation of a company. The intellectual property rights comprise of trademarks, copyrights, patents, trade secrets, etc. These rights are categorized according to their scope, subject matter that is protected, disclosure conditions for the grant of protection and duration of applicability of these rights. For instance, a patent is granted for innovations that are novel, involves an inventive step and has industrial application. Such a patent is to be valid for a period of 20 years and is granted upon the mandatory condition according to which the inventor completely discloses the invention to the public. Likewise, the copyright is granted for literary, artistic, cinematographic and record works for 100 years minimum. The trademark protects a mark, brand name, company name, logo, smell and sound that distinguish one product from the other. Its duration does not exceed 10 years and is renewable for 5 years if the business is interested in protecting th e mark. The trade secrets is a protection for the subject matters that are not covered by any of the intellectual property rights, require unlimited protection or are of such a nature that a disclosure to the public might result in substantial loss for the owner. The trade secrets are a special protection that is recognized by the World Trade Organizationââ¬â¢s Trade Related Intellectual Property Rights (TRIPS) Agreement. It has not been defined in a definite manner. The trade secrets are those secrets which attach considerable value to its owner, are of benefit to the competitors and can literally tarnish the image of the owner. They have a lifetime of protection unless not disclosed to public or stolen. The trade secret that is once leaked loses its secrecy. However, the owner of the trade secret can take action against such disclosure or theft if it is possible to prove that the trade secret was carefully locked in a secretive place, substantial measures were taken to keep the trade secret, the employees were not aware of the secret information, the top level employees, financial advisors, consultants, and any third parties, who were directly or indirectly involved with the trade secret, signed the Non-Disclosure Agreements (NDA). The court upon sufficient proof of the measures and value attached to the trade secret can order injunction that bars the thieves or the violators of NDAs from
Friday, August 9, 2019
Marketing Proposal Assignment Example | Topics and Well Written Essays - 500 words
Marketing Proposal - Assignment Example A good formal marketing plan will ensure the business moves forwards and makes profits since it understands the dynamics of the market (Hartline & Ferrell, 2010). The organization has been facing stiff competition in the market which has since been dominated by other players. Some of the companyââ¬â¢s competitors include Queensland Wow Sight & Sound, Dick Smith Electronic, Woolworths Limited, David Jones Limited and Myer Holding Limited among others (Hanneley, 2010). Besides this, the macro environment, which may affect the organizational performance relates to economic conditions masking many companies to close their offices as well as many people not able to afford services and products of the company. Political unrest in some nations, cultural taste as well as government regulations may affect the sustainability of the companyââ¬â¢s products in other markets. The company main competitive advantage is because of its online stores where clients can order from anywhere within their reach. This makes it possible for the company to contact their clients from wherever place they are hence giving them advantage over other companies. It also has a number of stores which are distributed all lover contributing to increased advantage in the local market. Additionally, it offers one stop shop where clients can get a wide range of products for their office as well as home use. The companies target market includes the real estate developers as the company has an interest in lighting system and electrical. The company targets office as it supplies office furniture, computers and other communication equipments. It targets home owners in the supply of small appliances, furniture, bedding, carpet among other things. In general, the company targets everyone who has room as it has the products and services needed in changing the look of the room by equipping and installing new features. The products to be introduced in the market will meet the customerââ¬â¢s expectation because the
Subscribe to:
Posts (Atom)